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Translational Regular Variation Asymptotic
Behavior and Applications

Milan R. Tasković

Abstract. In this paper we introduce some new classes of functions
which are a translational regular asymptotic behavior. In this sense we
continue the study of the translational regularly varying functions. This
results are closely connected with the Karamata’s theory of regularly
varying functions.

On the other hand, in this paper we give some theorems of Tauberian
nature via the translational regularly varying functions. Applications
of new Tauberian theorems and a method of the Monotone Density
theorem for Stieltjes transform are considered.

This results are connection with the Karamata’s Tauberian theo-
rems,with the Karamata’s Hauptsatz, as and with the classical state-
ments of Hardy and Littlewood.

1. Introduction and history. We shall say that a positive, finite
and measurable function K, defined on Ia := [a,∞) for some a > 0, is a
regularly varying function at infinity (denoted this class by RV ) in the sense
of Karamata if the limit

lim
x→∞

K(λx)
K(x)

= r(λ)

is positive and finite for each λ > 0. It follows immediately that r(λ) = λρ

for some ρ ∈ R. The number ρ is the index of K.
The RV functions of index ρ = 0 are called slowly varying (denoted this

class by SV ) functions and are denoted by L. Their interest lies in the fact
that K is a RV function of index ρ if and only if K(x) = xρL(x) for L ∈ SV
on some Ia. Classes SV and RV of slowly and regularly varying functions
were introduced by Jovan Karamata in 1930. In this respect we refer to the
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books of E. Seneta [28] and Bingham-Goldie-Teugels [4]. Both classes have
important consequences in the study of asymptotic processes.

A positive, finite and measurable function f , defined on Ia for some a > 0,
is said to be translational regularly varying at infinity (denoted this class by
Tr(RV )) if the limit

(1) lim
x→∞

f(x+ λ)
f(x)

= h(λ)

is positive and finite for each λ ≥ 0. In actual fact a weaker definition can
be used, for the assumption that this positive finite limit property obtains
for all λ in a subset of positive measure of (0,∞) implies that it obtains for
all λ ∈ (0,∞).

In connection with this, since h(λ) is a positive measurable solution of
the following functional equation

(2) h(u+ v) = h(u)h(v), u, v > 0,

it is well known that h(λ) = eσλ for some finite σ, and so we can write
f(x) = eσλA(x), where

(3) lim
x→∞

A(x+ λ)
A(x)

= 1 for each λ ≥ 0;

such a translational regularly varying function, for which the index σ of
translational regular variation is zero, is called translational slowly varying
(denoted this class by Tr(SV )). Classes Tr(SV ) and Tr(RV ) of transla-
tional slowly and regularly varying functions were introduced by M. Tasković
in [32]. The three most important properties of translational regularly vary-
ing functions (from which others are easily deducible) are:

(i) The convergence in (1), or equivalently (3), is uniform for λ in any
fixed interval [a, b], 0 < a < b <∞.

(ii) (Representation Theorem). There exist σ ∈ R and a number b ≥ a
such that for x ≥ b a translational regularly varying function f has repre-
sentation

(4) f(x) = µ(x) exp
(
σx+

∫ x

b
ε(t) dt

)
,

where µ(x) is a positive and measurable function on Ib such that µ(x) →
c ∈ (0,∞) as x → ∞, and ε(x) is a continuous function on Ib such that
ε(x) → 0 (as x→∞).

Conversely, any function f having representation (4) is clearly transla-
tional regularly varying.

(iii) (Characterization Theorem). If f is a translational regularly varying
function, then the limit h(λ) in (1) is necessarily of the form eσλ for some
−∞ < σ <∞ and for each λ ≥ 0.

In connection with the Karamata’s functions we notice that Bojanić and
Karamata in 1963 are have been considered for a real valued function f the
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following equality

lim
x→∞

f(λx)− f(x)
g(x)

= H(λ),

for every λ > 1, where g ∈ RV , i.e., g(x) = xσL(x) for some finite σ and
L ∈ SV . This class of all functions f is denoted by KB.

The last condition played an important role in papers: L. de Haan [10];
Ash, Erdös and Rubel [1]; Bingham and Goldie [2,3]; Omey [24]; Delange
[9]; Geluk, L. de Haan, and Stadtmüller [31]; and in many others.

In this paper we continue the study of the translational regularly varying
functions via a translational regularly varying behaviour. In this sense we
introduce and considered some new classes of functions with the preceding
translational behaviour.

2. Translational regularly varying behaviour. Let x 7→ G(x) be a
measurable positive function on Ia for some a > 0, and f be a real valued
function, defined for sufficiently large positive value of its argument such
that the limit

lim
x→∞

f(x+ λ)− f(x)
G(x)

= R(λ)(Tb)

exists for all λ in a subset S1 ⊂ [0,∞) of positive measure, and that there
is a subset S2 (still of positive measure) of S1, and a number λ1 ∈ S1 such
that R(λ1) 6= 0 with µ ∈ S2 implies λ1 + µ ∈ S1 and R(λ1 + µ)−R(µ) 6= 0.

The class of all functions f which satisfying the preceding condition (Tb)
is denoted by Tr(KB). The following fact is essential.

Proposition 1. If f ∈ Tr(KB), then x 7→ G(x) is a translational regu-
larly varying function, i.e., G(x) = eσxA(x) for some −∞ < σ < ∞ and
A ∈ Tr(SV ).

Proof. Let f ∈ Tr(KB), then for µ ∈ S2 we obtain the following essen-
tial equality of the form

f(x+ λ+ µ)− f(x)
G(x)

=
f(x+ λ+ µ)− f(x+ µ)

G(x+ µ)
· G(x+ µ)

G(x)
+
f(x+ µ)− f(x)

G(x)
,

(5)

hence, as x 7→ ∞, we obtain

R(λ+ µ) = R(λ) lim
x→∞

G(x+ µ)
G(x)

+R(µ),

where this limit must exist and in fact that

lim
x→∞

G(x+ µ)
G(x)

=
R(λ+ µ)−R(µ)

R(λ)

exists for every µ ∈ S2, and being nonzero here, is strictly positive. Hence,
by Characterization Theorem for the clas Tr(RV ) (see: Tasković [32]), G is
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a function of translational regular variation, i.e., G(x) = eσxA(x) for some
finite σ and A ∈ Tr(SV ). The proof is complete.

In connection with this statement, in further, the class of all functions
f which satisfying the condition (Tb) for G(x) = eσxA(x) is denoted by
Tr(KBσ) for −∞ < σ <∞.

Theorem 1. (Characterization Theorem). If f ∈ Tr(KB), then the limit
R(λ) in (Tb) is necessarily of the form

R(λ) = C(1− eσλ)

for σ 6= 0 and some constant C 6= 0. If f ∈ Tr(KB) is a measurable
function on Ia for some a > 0 and σ = 0, then

R(λ) = cλ (for some constant c 6= 0).

Proof. As well known, since S1 is a set of positive measure, from a result
of Steinhaus [30], we can find a number b > 1 such that for any λ ∈ [1, b]
there exist α, β ∈ S1 such that λ = β − α. Thus for any µ ∈ [1, b] there is
an λ2 such that µ+ λ2 ∈ S1. Hence for λ ∈ [1, b] we have

f(x+ λ)− f(x)
G(x)

=
f(λ+ λ2 + x− λ2)− f(λ2 + x− λ2)

eσλ2eσ(x−λ2)A(λ2 + x− λ2)
and putting y = x− λ2 we obtain

f(x+ λ)− f(x)
G(x)

=
f(y + λ+ λ2)− f(y)
eσλ2eσyA(y + λ2)

− f(y + λ2)− f(y)
eσλ2eσyA(y + λ2)

,

whence as y →∞, since A(y + λ2) ∼ A(y) and λ+ λ2 ∈ S1, we obtain

lim
x→∞

f(x+ λ)− f(x)
G(x)

= e−σλ2(R(λ+ λ2)−R(λ2))

as a finite number for arbitrary λ ∈ [1, b]. It is now necessary to extend this
to λ ∈ [0,∞)).

In this sense let γ ≥ 0 and take fixed λ ∈ [1, b]. Then, similarly with the
preceding, we have

f(x+ γ)− f(x)
G(x)

=
f(λ+ γ + x− λ)− f(γ + x− λ)

eσ(γ+x−λ)eσ(λ−γ)A(λ− γ + γ + x− λ)
−

− f(λ− γ + γ + x− λ)− f(γ + x− λ)
eσ(γ+x−λ)eσ(λ−γ)A(λ− γ + γ + x− λ)

and putting y = γ + x− λ

=
f(y + λ)− f(y)

eσ(λ−γ)eσyA(y + λ− γ)
− f(y + λ− γ)− f(y)
eσ(λ−γ)eσyA(y + λ− γ)

,

thus, if λ− γ ∈ [1, b], letting y →∞ we obtain

lim
x→∞

f(x+ γ)− f(x)
G(x)

= e−σ(λ−γ)(R(λ)−R(λ− γ)),
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i.e., this means that for 0 ≤ γ < λ − 1, i.e., for all γ satisfying 0 ≤ γ < b,
that

lim
x→∞

f(x+ γ)− f(x)
G(x)

= R(γ)(6)

exists and is finite. Repeating the argument (k − 1) times, say, we obtain
that (6) obtains for all γ satisfying 0 ≤ γ < bk. Since b > 1, we have that
any positive γ will eventually be convered by this interval.

Assuming σ 6= 0, proceed as in the preceding proof of Proposition 1,
except using arbitrary λ in place of λ1 and arbitrary µ, to get

R(λ+ µ) = eσλR(µ) +R(λ),(7)

so that, interchanging the role of λ and µ, on the other hand, we obtain

R(λ+ µ) = eσµR(λ) +R(µ)(8)

whence, equating (7) and (8) we have the following fact that is

R(λ)(1− eσµ) = R(µ)(1− eσλ),

i.e., supposing λ, µ 6= 0 we obtain

R(λ) = C(1− eσλ),(9)

where C = constant = R(µ)/(1 − eσµ). The equality (9) is correct and for
λ = 0 also.

In the second case, if σ = 0 and f is assumed measurable on Ia for some
a > 0, then R(λ) is a measurable function on (0,∞) such that

R(λ+ µ) = R(λ) +R(µ)(10)

for λ, µ > 0. Thus R(λ) = cλ (c 6= 0) is a finite, measurable and positive
solution for λ > 0 to the Cauchy functional equation (10). The proof is
complete.

In connection with the preceding Proposition 1 and Theorem 1, we no-
tice that, if we are willing to assume nature of x 7→ G(x) in (Tb), then, in
place of Theorem 1, we may consider the following neater statement, which
requires no further proof. This is similar stroke like in: Seneta [28].

Theorem 2. Let f be a real valued function, defined on Ia for some a > 0,
and A ∈ Tr(SV ) such that

lim
x→∞

f(x+ λ)− f(x)
eσxA(x)

= R(λ)(11)

exists (is finite) for λ in a subset S ⊂ [0,∞) of positive measure. Then (11)
obtains with a finite limit R(λ) for every λ ∈ [0,∞). If σ 6= 0, then

R(λ) = C(1− eσλ)

for some constant C. If σ = 0 and f is assumed measurable on Ia, then

R(λ) = cλ (for some constant c).
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Suppose additionally that, in the case σ > 0 f is bounded on each finite
interval beyond a certain point, then if σ > 0:

f(x) = CeσxA(x) + o(eσxA(x)), as x 7→ ∞,

and if σ < 0;

f(x) = K + CeσxA(x) + o(eσxA(x)), as x→∞,

where the constant K = limx→∞ f(x) exists.

The most important property of Tr(KB) functions may be stated as
follows as the analog of uniformity of convergence on finite intervals.

Theorem 3. (Uniform Convergence Theorem). Let f be a real valued me-
asurable function, defined for sufficiently large values on Ia for some a > 0,
and G(x) = eσxA(x) for −∞ < σ <∞ and A ∈ Tr(SV ) such that

f(x+ λ)− f(x) = O(G(x)), as x→∞,(12)

for each λ ≥ 0, then this property holds uniformly with respect to λ ∈ [α, β]
for 0 ≤ α < β <∞.

The statement remains true if (12) is replaced by

f(x+ λ)− f(x) = o(G(x)), as x→∞.

Proof. We prove uniformity with respect to µ ∈ [0, 1]. If this does not
hold then there exist sequences {xn}n∈N with the property xn → ∞ and
{µn}n∈N in [0, 1] such that

|f(xn + µn)− f(xn)|
G(xn)

→∞ (n→∞)(13)

From Seneta [28, p.80] there exist measurable sets Ur,s and Vr,s defined
by

Ur,s =
{
µ ∈ [0, 2] :

∣∣f(xn + µ)− f(xn)
∣∣ < rG(xn) for n ≥ s

}
(14)

and

Vr,s =
{
λ ∈ [0, 2] :

∣∣f(xn + µn + λ)− f(xn + µn)
∣∣ < rG(xn + µn) for n ≥ s

}
,

(15)

where Ur,s and Vr,s are clearly measurable, each is a monotone increasing
sequence of sets as r →∞ or s→∞; also, Ur,s and Vr,s converges to [0, 2]
as r, s→∞.

Select r and s large enough that m(Ur,s) > 3/2 and m(Vr,s) > 3/2 with
Ur,s ⊂ [0, 2] ⊂ [0, 3] and Dr,s = Vr,s + µs ⊂ [0, 3], where m(Dr,s) > 3/2.
Thus there is µ ∈ Ur,s such that µ ∈ Vr,s + µs or µ − µs ∈ Vr,s. For this µ
from (14) and (15) we have

|f(xs + µ)− f(xs)|+ |f(xs + µ)− f(xs + µs)| < r(G(xs) +G(xs + µs)),
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so that, by the triangle inequality, hence we obtain the following inequality

|f(xs + µs)− f(xs)|
G(xs)

< r

(
1 +

G(xs + µs)
G(xs)

)
,

i.e., as s → ∞, the Uniform Convergence Theorem for translational regu-
larly varying functions gives

lim sup
s→∞

|f(xs + µs)− f(xs)|
G(xs)

≤ r(1 + eσ),

since µn ∈ [0, 1], G(x) = eσxA(x) and A ∈ Tr(SV ). But this contradicts to
(13). Second part of statement for case f(x + λ) − f(x) = o(G(x)) can be
proved analogously. The proof is complete.

Proposition 2. let A ∈ Tr(SV ) and let x 7→ h(x) be an e.g. measurable
function on Ia for some a > 0 and bounded on each finite interval sufficiently
far, then

A(x)h(x) = A(x)τ(x) +
∫ x

a
τ(t)A(t)dt,(16)

for x ≥ a, where

τ(x) =
1
x

(
h(x)− 1

xA(x)

∫ x

a
h(y)A(y)dy

)
.(17)

Proof. The equality (16) is a consequence of calculation from the follo-
wing integral equality∫ x

a

(
h(t)A(t)− 1

t

∫ t

a
h(y)A(y)dy

)
1
t
dt =

1
x

∫ x

a
h(y)A(y)dy.(18)

Proposition 3. Let A be a translational slowly varying function, i.e., A ∈
Tr(SV ), then

lim
x→∞

∫ x
a A(t)dt
A(x)

= 1.(19)

Proof. If b ≥ a is chosen so that A is bounded on [b, x] for each fixed
x ≥ b, then for 0 < δ < 1 we obtain the following inequalities∫ x

b
A(t)dt =

∫ x

b
e−δteδtA(t)dt ≤ sup

b≤t≤x
(e−δtA(t))

∫ x

b
eδtdt,

i.e., ∫ x

b
A(t)dt ≤ sup

b≤t≤x
(e−δtA(t))

eδx − eδb

δ
,(20)

and similarly ∫ x

b
A(t)dt ≥ inf

b≤t≤x
(e−δtA(t))

eδx − eδb

δ
,(21)
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Thus, as x → ∞, the right hand sides of (20) and (21) from the known
facts on properties for Tr(RV ) are asymptotic equality with A(x)/δ and
δA(x) respectively, i.e., thus we have

δ ≤ lim inf
x→∞

∫ x
b A(t)dt
A(x)

≤ lim sup
x→∞

∫ x
b A(t)dt
A(x)

≤ 1
δ
,

and since 0 < δ < 1 is arbitrary, it follows that statement holds as δ → 1.
The proof is complete.

Theorem 4. Let f ∈ Tr(KB0) defined on Ia for some a > 0 and A ∈
Tr(SV ), then for x ≥ a the following representation holds

f(x) =
∫ x

a
δ(t)A(t)dt+ o(A(x))

as x → ∞, where limx→∞ δ(x) exists and where R(λ) = cλ for some con-
stant c.

Proof. First let h(x) = f(x)/A(x) which is measurable on Ia and bo-
unded on finite intervals of Ia. Put correspondingly γ(x) for τ(x) in (16),
then

f(x) = xA(x)γ(x) +
∫ x

a
γ(t)A(t)dt(22)

and a second application of Proposition 2 with h(x) = xγ(x) supposing for
the moment the requisite boundedness on finite intervals sufficiently far of
γ(x) and correspondingly τ(x) = ε(x) gives

xA(x)γ(x) = A(x)ε(x) +
∫ x

a
ε(t)A(t)dt(23)

such that so combining (22) and (23) we obtain the following fact

f(x) =
∫ x

a
δ(t)A(t)dt+ ε(x)A(x),

where δ(x) = γ(x)+ε(x). It now suffices to prove γ(x) → R(λ)/λ as x→∞,
for this implies also boundedness of γ and ε(x) → 0 from the definition of
ε(x), since as x→∞ holds (19) by Proposition 3. In this sense we have

γ(x+ λ)A(x+ λ)− γ(x)A(x)
A(x)

=
f(x+ λ)− f(x)

A(x)
−

− 1
A(x)

(∫ x+λ

a
h(t)A(t)dt−

∫ x

a
h(t)A(t)dt

)
=

=
f(x+ λ)− f(x)

A(x)
− 1
A(x)

(∫ x

a
[f(t+ λ)− f(t)]dt−

∫ a

a−λ
f(t+ λ)dt

)
hence, as x→∞, we obtain for each fixed λ ≥ 0 that

γ(x+ λ)A(x+ λ)− γ(x)A(x)
A(x)

→ 0;
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because as x→∞ we have that (f(x+λ)−(f(x))/A(x) → R(λ), A(x) →∞
and

1
A(x)

∫ x

a
(f(t+ λ)− f(t))dt→ R(λ)

also, by Proposition 3. On the other hand, from the equality (18) we have

1
x

∫ x

a
f(y)dy =

∫ x

a
γ(t)A(t)dt,

so that, for any λ ≥ 0, the following equality holds of the form

1
A(x)

∫ x+λ

x
γ(t)A(t)dt =

1
A(x)

(∫ x

a
(f(t+ λ)− f(t))dt

)
+ o(1)

as x→∞ as before, so that

1
A(x)

∫ x+λ

x
γ(t)A(t)dt == R(λ) + o(1)

as before. In the following putting t = x+ y such that as x→∞ we have

1
A(x)

∫ λ

x
γ(x+ y)A(x+ y)dy = R(λ) + o(1)

hence we obtain that∫ λ

0

γ(x+ y)A(x+ y)− γ(x)A(x)
A(x)

dy + λγ(x) = R(λ) + o(1)

as x → ∞. Thus, so finally we see as x → ∞ that is γ(x) → R(λ)/λ. The
proof is complete.

3. Translational O-regularly varying behaviour. Let x 7→ G(x) be
a measurable positive function on Ia for some a > 0, and f be a real valued
function, defined for sufficiently large positive value of its argument such
that the limit

f∗(λ) := lim sup
x→∞

f(x+ λ)− f(x)
G(x)

or f∗(λ) := lim inf
x→∞

f(x+ λ)− f(x)
G(x)

exists for every λ ≥ 0.
When G ∈ Tr(RV ) we define Tr(EKB) as the class of measurable fun-

ctions f such that for some constants ρ and τ we have

ρhσ(λ) ≤ f∗(λ) ≤ f∗(λ) ≤ τhσ(λ)(E)

for every λ ≥ 0, where hσ(λ) ≡ λ for σ = 0 and hσ(λ) ≡ σ−1(eσλ − 1) for
σ 6= 0.

Throughout this section, ψ(λ) will denote the function

ψ(λ) := lim sup
x→∞

sup
µ∈[0,λ]

f(x+ µ)− f(x)
G(x)
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and D(λ, µ) will denote the function

D(λ, µ) := lim sup
x→∞

sup
γ∈[λ,µ]

f(x+ γ)− f(x)
G(x)

for µ ≥ λ ≥ 0.
In connection with this, the positive function f has translational bo-

unded increase (or f ∈ Tr(BI)) if A(λ, f) <∞, where

A(λ, f) := lim sup
x→∞

sup
µ∈[0,λ]

f(x+ µ)
f(x)

;

or equivalently, if trα(f) < ∞, where trα(f) is the infimum of those α for
which there exists a constant C = C(α) such that for each q > 0 we have

f(x+ λ)
f(x)

≤ C[1 + o(1)]eλα (x→∞)

uniformly in λ ∈ [0, q].

Proposition 4. Assume G has translational bounded increase, i.e., G ∈
Tr(BI). If ψ(λ) <∞ for some λ > 0, then ψ(λ) <∞ for every λ > 0.

Proof. Let G ∈ Tr(BI). For λ, µ ≥ 0 we have from (5) the following
essential equality of the form

sup
γ∈[µ,λ+µ]

f(x+ γ)− f(x)
G(x)

=
G(x+ µ)
G(x)

sup
γ∈[0,λ]

f(x+ µ+ γ)− f(x+ µ)
G(x+ µ)

+

+
f(x+ µ)− f(x)

G(x)
;

and since the supremum on the right is nonegative and G ∈ Tr(BI) whence
we obtain

D(µ, λ+ µ) ≤ Ceσµψ(λ) + ψ(µ),
i.e., since ψ(λ+ µ) = max{ψ(µ),D(µ, λ+ µ)} we conclude

ψ(λ+ µ) ≤ Ceσµψ(λ) + ψ(µ),

hence, with monotonicity, we obtain the required result. The proof is com-
plete.

In further, we consider the extent to which a statement such as f∗(λ) <∞
is implicitly uniform in λ. The result below shows that some local unifor-
mity is present if f is measurable and the set of λ for which f∗(λ) < ∞ is
assumed is not too small.

Theorem 5. Let G ∈ Tr(BI) and let f be a measurable function such that
f∗(λ) <∞ on a set in [0,∞) of positive measure. Then there exists a0 ≥ 0
such that f∗(λ) <∞ for all λ ≥ a0 and for every [a, b] with a0 < a < b <∞
is

lim sup
x→∞

sup
λ∈[a,b]

f(x+ λ)− f(x)
G(x)

<∞.
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The proof of this statement is an analogous to the proof of Theorem 8 in
Tasković [32, p. 117] and thus we omit it.

We notice that in Theorem 5 for a > a0 and τ > trα(G) there exist x0

and K depending on a and τ such that with σ = max{0, τ} is

f(x+ λ)− f(x)
G(x)

≤ Keσλ (for λ ≥ a, x ≥ x0).

Theorem 6. Let G ∈ Tr(RV ) and let f be a measurable function such that
f∗(λ) ≤ k(λ) on a set of positive measure in [a0,∞) and

k(λ+ µ) ≥ eσµk(λ) + k(µ)(24)

for λ, µ ≥ a0 ≥ a > 0, where k is a measure function on [a0,∞). Then
there exists b ≥ a0 such that for all λ ≥ b is

f(x+ λ)− f(x)
G(x)

≤ k(λ) + o(1) as x→∞;(25)

and, further, for all c and d with d > c ≥ b, the fact (25) holds uniformly
for every λ ∈ [c, d].

Proof. Let G ∈ Tr(RV ). Then, from (5), we obtain the following ine-
quality of the form

f∗(λ+ µ) ≤ eσµf∗(λ) + f∗(µ);

thus, together with (24), the set of λ on which f∗(λ) ≤ k(λ) is closed under
multiplication. Hence, from a result of Hille-Phillips [12], it follows (25).

Suppose that uniformity fails in (25). Then there exist ε > 0 and the
sequences xn →∞ (n→∞) and λn ∈ [c, d] such that

f(xn + λn)− f(xn)
G(xn)

> k(λn) + ε

for every n ∈ N. Observe that there is a neighborhood Jn of λn ∈ [c, d] such
that

f(xn + λ)− f(xn)
G(xn)

> k(λ) + ε

for any λ ∈ Jn. Define by induction a decreasing sequence of closed intervals
Ik ⊂ [c, d], and a subsequence (xn(k)) of (xn) such that

f(xn(k) + µ)− f(xn(k))
G(xn(k))

≥ k(λ) +
ε

3

for every µ ∈ Ik. To define Ik+1 when Ik is known, observe that if δk is the
length of Ik, and q an integer such that qδk > d− c, then

f(x+ δk)− f(x)
G(x)

≤ k(λ) +
ε

3q
as soon as x is large enough. Hence we have a contradiction which completes
the proof.
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Theorem 7. Let G ∈ Tr(RV ) and f ∈ Tr(EKB), then (E) holds locally
uniformly in Ia, i.e., for every µ > a > 0 we have

ρhσ(λ) + o(1) ≤ f(x+ λ)− f(x)
G(x)

≤ τhσ(λ) + o(1)

as x→∞ and uniformly in λ ∈ [a, µ].

The proof of this statement is a totally analogous with the preceding
proof of Theorem 6 and thus we omit it.

The following result for translational rapid variation is an analogous with
the preceding statements for uniformity.

Theorem 8. Let f be a measurable function and let

f(x+ λ)− f(x)
G(x)

→ +∞

an a set of positive measure in Ia for a > 0. Then there exists b ≥ a such
that

lim
x→∞

f(x+ λ)− f(x)
G(x)

= +∞ (λ ≥ b)

uniformly in λ over every interval (d,∞) for d ≥ b. Further, f is bounded
on every finite interval sufficiently for to the right.

In this part, in connection with the preceding and former facts we define
two pairs of indices in the following sense.

Here as before indices may be infinite; all other constants are finite;
sup ∅ := −∞, inf ∅ := +∞; and

h(λ) ≡ hσ(λ) :=
∫ λ

0
eσtdt.

The translational upper local G-index of f , denoted by tr(τf ), is the
infimum of those τ for which, for every a > 0,

f(x+ λ)− f(x)
G(x)

≤ τhσ(λ) + o(1)(26)

as x→∞ and uniformly in λ ∈ [0, a].
On the other hand, the translational lower local G-index of f , deno-

ted by tr(df ), is the supremum of those d for which, for every a > 0,

f(x+ λ)− f(x)
G(x)

≥ dhσ(λ) + o(1)(27)

as x→∞ and uniformly in λ ∈ [0, a].
It is easy to see that if tr(τf ) is finite we can put τ = tr(τf ) in (26); si-

milarly for tr(df ) in (27). Also, Theorem 7 gives immediately the following
result.
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Theorem 9. (Indices Theorem). A function f ∈ Tr(EKB) if and only if
it is measurable and its translational local G-indices tr(τf ) and tr(df ) are
both finite.

We notice that we turn now to expressions for tr(τf ) in terms of the
functions f∗ and ψ defined in the preceding forms.

Proposition 5. If ψ(0+) > 0, then the translational upper local G-index
of f tr(τf ) = +∞. If ψ(0+) = 0, then there exists

tr(τf ) = lim
λ↓0

f∗(λ)
eλ − 1

= lim
λ↓0

f∗(λ)
h(λ)

= sup
λ>0

f∗(λ)
h(λ)

∈ [−∞,∞].

In connection with this equalities, we notice that the following equalities
hold in the form as

lim
λ↓0

ψ(λ)
eλ − 1

= lim
λ↓0

ψ(λ)
h(λ)

= sup
λ>0

ψ(λ)
h(λ)

∈ [0,∞].

In connection with the preceding, for G ≡ A ∈ Tr(SV ), the translati-
onal upper global A-index of f , denoted by tr(αf ), is the infimum of
those α for which there exists a constant C = C(α) such that, for every
a > 0,

f(x+ λ)− f(x)
A(x)

≤ C + αλ+ o(1)

as x→∞ and uniformly in λ ∈ [0, a].
Also, the translational lower global A-index of f , denoted by tr(βf ),

is the supremum of those β for which there exists a constant m = m(β)
such that, for every a > 0,

f(x+ λ)− f(x)
A(x)

≥ m+ βλ+ o(1)

as x→∞ and uniformly in λ ∈ [0, a].
In further, for G ∈ Tr(BI), the class Tr(OKB) is the class of measurable

f that satisfy

f(x+ λ)− f(x) = O(G(x)), as x→∞,

for every λ ≥ 0; and Tr(oKB) is the class of measurable f that satisfy

f(x+ λ)− f(x) = o(G(x)), as x→∞,

for every λ ≥ 0.
Unlike the translational local indices of the preceding part, the transla-

tional global indices are defined only for σ = 0. However for calculating the
indices it is desirable to have expressions in terms of the functions f∗ and
ψ under suitable conditions.
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Proposition 6. If ψ < ∞, then there exists the translational upper global
A-index of f in the following form

tr(αf ) = lim
λ→∞

f∗(λ)
λ

= inf
λ>0

f∗(λ)
λ

∈ [−∞,∞].

In connection with this equalities, we notice that there exists

lim
λ→∞

ψ(λ)
λ

= inf
λ>0

ψ(λ)
λ

∈ [−∞,∞].

Now, Theorem 3 gives immediately the following result as an Global In-
dices Theorem.

Theorem 10. Let A ∈ Tr(SV ) and f be a measurable function. Then, a
function f ∈ Tr(OKB) if and only if its translational global indices tr(αf )
and tr(βf ) are both finite.

In further, we first give the basic representations for the classes Tr(OKB)
and Tr(EKB).

Theorem 11. (Representation for Tr(OKB)). Let G ∈ Tr(BI) be a me-
asurable function. Then f ∈ Tr(OKB) if and only if

f(x) = C + η(x)G(x) +
∫ x

b
ξ(t)G(t)dt(28)(

i.e., if and only if there exists σ ∈ R such that

f(x) = C + σx+ η(x)G(x) +
∫ x

b
ξ(t)G(t)dt

)
(29)

for x ≥ b, where C and b are constants and the measurable functions η and
ξ are bounded.

Proof. If f is a function given by (28), then we obtain following inequ-
ality in the form

|f(x+ λ)− f(x)|
G(x)

≤ δ(x)
[
1 +

G(x+ λ)
G(x)

+
∫ λ

0

G(x+ u)
G(x)

dt

]
for λ > 0 and x ≥ b, where δ(x) = max{sup[x,∞] η, sup[x,∞) ξ}. This means,
since T ∈ Tr(BI), boundedness as x → ∞, so f ∈ Tr(OKB). For the
converse write

f(x) =
∫ b+s

b
f(t)dt+G(x)

∫ x+s

x

f(x)− f(t)
G(x)

dt+
∫ x

b

f(t+ s)− f(t)
G(t)

G(t)dt,

for large enough b. By Theorem 3 the term (f(x)−f(t))/G(x) in the second
integral is uniformly bounded for large x, so the middle term on the right is
O(G(x)). In the third integral the term (f(t+ s)− f(t))/G(t) is O(1) and
the first term on the right is constant. The proof is complete.
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Remarks. The statement reamains true if f ∈ Tr(OKB) is replaced by
f ∈ Tr(oKB), where bounded means o(1) as x → ∞. Also, measurability
of G is only a convenience here. If G is not measurable, replace ξ(t)G(t)
in (28) or (29) by F(t), where F(t) is a measurable function and O(G) or
o(G). Then the representation still is valid.

Theorem 12. (Representation Theorem for Tr(EKB)). Let G ∈ Tr(RV ).
Then f ∈ Tr(EKB) if and only if

f(x) = C + η(x)G(x) +
∫ x

b
ξ(t)G(t)dt(

i.e., if and only if there exists σ ∈ R such that

f(x) = C + σx+ η(x)G(x) +
∫ x

b
ξ(t)G(t)dt

)
for x ≥ b, where C and b are constants, η(x) → 0 as x→∞, ξ is bounded,
and both η and ξ are mesaurable. The translational local indices of f are
given by

tr(τf ) = lim
λ↓0

lim sup
x→∞

1
eλ − 1

∫ x+λ

x
ξ(t)dt,

tr(df ) = lim
λ↓0

lim inf
x→∞

1
eλ − 1

∫ x+λ

x
ξ(t)dt,

and satisfy the following inequalities of the form

tr(τf ) ≤ lim sup
t→∞

ξ(t) and tr(df ) ≥ lim inf
t→∞

ξ(t).

The proof of this statement is an analogous with the preceding proof of
Theorem 11 and thus we omit it.

4. Some open problems. We shall say that a positive, finite and
measurable function f , denoted on Ia for some a > 0, is a translational
homothetic function at infinity (denoted this class by TH) if the limit

(29a) lim
x→∞

f(λx+ τ)
f(x)

= k(λ, τ)

is positive and finite for all λ > 0 and τ ≥ 0. Thus, from (29a), for λ = 1 we
obtain the class Tr(RV ) and for τ = 0 we have the class RV in Karamata’s
sense.

In connection with the preceding, we can considered an analogous tran-
slational homothetic behaviour in the following sense as the limit

lim
x→∞

f(λx+ τ)− f(x)
G(x)

= h(λ, τ) ∈ R ∪ {∞}(30)
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for all λ > 0 and all τ ≥ 0, where G : Ia → Ia for some a > 0. For λ = 1,
from (30), we obtain the class Tr(KB) and for τ = 0 we have the class KB
in Bojanić - Karamata’s sense.

The class of all functions f satisfying relation (30) is denoted by Ex(TH).
Open problem 1. To invent representation of the class Ex(TH) of the

all extension translational homothetic functions!? Also, to invent and some
characterizations of the class functions Ex(TH)!?

We notice that parallel to the Ex(TH) functions we can consider Ex(OTH)
functions as an analogous behaviour with the class OTH functions introdu-
ced in Tasković [32]. In this sense we can consider the following limit

lim sup
x→∞

f(λx+ τ)− f(x)
G(x)

= k(λ, τ) ∈ R ∪ {∞}(31)

for all λ > 0 and all τ ≥ 0, where G : Ia → Ia for some a > 0. Thus,
from (31), for λ = 1 we obtain the class Tr(OKB) and for τ = 0 we have
the class OKB functions which are study was initiaeted by Bojanić and
Karamata [6], and indipendently by L. de Haan [10].

The class of all functions f satisfying relation (31) is denoted by Ex(OTH).
Open problem 2. To invent representation of the class Ex(OTH) of

the all extension O-translational homothetic functions!? Also, to invent and
some characterizations of the class functions Ex(OTH)!?

5. Tauberian Nature Theorems. The theorems which we shall treat
first are called Abelian because they are generalization of a familiar result
of Abel. It was A. Tauber in 1897 year who first gave a conditional converse
of Abel’s theorem.

Tauberian statements are concerned with the deduction of the asymptotic
behaviour of functions from the asymptotic behaviour of their transforms.
In this sense, first, essential result is a very useful theorem due to Hardy
and Littlewood in 1912 year in its original form.

In connection with this, well known an integral extension results of Hardy
and Littlewood which due J. Karamata in 1931 year with an ingenious proof
via the regularly varying functions.

In this section we give some results of Tauberian nature in support of
the Karamata’s lemma (see: [18, Hauptsatz 1]), via translational regularly
varying functions.

We notice that first fundamental result of Tauberian nature for Laplace -
Stieltjes transform in 1929 due to Hardy and Littlewood [11] in the following
form.

Theorem HL. Let t 7→ f(t) ≥ 0 for t > 0 and t 7→ e−stf(t) is an
integrable function in (0,∞) such that∫ ∞

0
e−stf(t)dt ∼ Cs−δ (C ≥ 0, δ > 0)
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as s→ 0, then ∫ x

0
f(t)dt ∼ C

Γ(δ + 1)
xδ as x 7→ ∞.

For this and some other results in 1931 Karamata give further extensions
and new facts well known as Karamata’s Tauberian theorems. In this sense
the following initial result due to Karamata [18].

Theorem K. Let t 7→ α(t) be nondecreasing function and such that the
following integral of the form

f(s) =
∫ ∞

0
e−std(α(t))

converges for s > 0 and for some positive number γ > 0 let

f(s) ∼ 1
sγ

(as s→ 0 or +∞)

and let x 7→ g(x) be of bounded variation in (0, 1). Then the following
relation holds∫ ∞

0
e−stg(e−st)d(α(t)) ∼ 1

sγΓ(γ)

∫ ∞

0
e−tg(e−t)tγ−1dt

as s → 0 or +∞, where s varying through the set of points for which the
integral the left exists.

It was Littlewood in 1910 who first showed that the condition an = o(n−1)
in a Tauber’s theorem could be replaced by the condition an = O(n−1). In
this sense and connection with the results of Karamata [17] and [18] we
begin with the following statement.

Theorem 13. Let t 7→ α(t) be nondecreasing function and such that the
following integral of the form

f(s) =
∫ ∞

0
e−std(α(t))

converges for s > 0 and for n ∈ N := {1, 2, 3, . . .} and for some positive
number ρ let the following asymptotic relation holds

f(s) ∼ exp
(
± ρs

n+ 1

)
A

(
s

n+ 1
+ n

)
as s→∞,(32)

where A ∈ Tr(SV ). If x 7→ g(x) is a bounded variation function in (0, 1),
then ∫ ∞

0
e−stg(e−st)d(α(t)) ∼ e±ρsA(s)(n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tg(e−t)tρ−1dt(33)

as s → ∞, where s varying through the set of points for which the integral
on the left exists.
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Proof. Let α(t) be continuous except perhaps in the set of points
x0, x1, x2, . . . and let g(e−t) be continuous except perhaps in the points
y0, y1, y2, . . .; and denote by S the set of points yi/xi (i, j = 0, 1, 2, . . .). If s
is not in S the integral on the left of (32) exists since α(t) and g(e−st) will
have no common discontinuities.

Since S is a countable set its complement in dense in (0,∞) so that s
may approach zero or become infinite while remaining in the set of points
for which the integral on the left of (33) exists.

Let ε be an arbitrary positive number. Determine polynomials p(x) and
P (x), from Karamata [18, Hauptsatz 1] so that

p(x) < g(x) < P (x) for 0 ≤ x ≤ 1,

and

1
Γ(ρ)

∫ ∞

0
e−ttρ−1

[
P (e−t)− p(e−t)

]
dt < ε;(34)

thus, since t 7→ α(t) is nondecreasing, we obtain the following inequalities
of the form

∫ ∞

0
e−stp(e−st)d(α(t)) ≤

∫ ∞

0
e−stg(e−st)d(α(t)) ≤

∫ ∞

0
e−stP (e−st)d(α(t))

(35)

and

(n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tp(e−t)tρ−1dt ≤ (n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tg(e−t)tρ−1dt ≤

≤ (n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tP (e−t)tρ−1dt;

(36)

such that, if we replace s by (n+ 1)s in the relation (32) we obtain∫ ∞

0
e−ste−nstd(α(t)) ∼ e±ρsA(s+ n) =

e±ρsA(s+ n)
(n+ 1)−ρΓ(ρ)

∫ ∞

0
e−te−nttρ−1dt

for any positive integer n, whence we have the following asymptotic relations
of the form∫ ∞

0
e−stP (e−st)d(α(t)) ∼ e±ρsA(s+ n)

(n+ 1)−ρΓ(ρ)

∫ ∞

0
e−tP (e−t)tρ−1dt =

=
e±ρsA(s+ n)(n+ 1)ρA(s)

A(s)Γ(ρ)

∫ ∞

0
e−tP (e−t)tρ−1dt ∼

∼ e±ρsA(s)(n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tP (e−t)tρ−1dt



Milan R. Tasković 69

for any polynomial P (x) and any function A ∈ Tr(SV ). On the other hand,
from (35), we have

(n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tp(e−t)tρ−1 ≤ lim inf

s→∞

e∓ρs

A(s)

∫ ∞

0
e−stg(e−st)d(α(t)) ≤

≤ lim sup
s→∞

e∓ρs

A(s)

∫ ∞

0
e−stg(e−st)d(α(t)) ≤ (n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tP (e−t)tρ−1dt,

(37)

where s approaching infinite in the set complementary to S. From (34),
(36) and (37) we see that

lim
s→∞

e∓ρs

A(s)

∫ ∞

0
e−stg(e−st)d(α(t)) =

(n+ 1)ρ

Γ(ρ)

∫ ∞

0
e−tg(e−t)tρ−1dt,

the desired result. The proof is complete.
From the preceding result of Theorem 13 by specializing g(x) we may

obtain the following form of Tauberian statement.

Theorem 14. Let t 7→ α(t) be nondecreasing function and such that the
following integral of the form

f(s) =
∫ ∞

0
e−std(α(t))

converges for s > 0 and for n ∈ N and for some positive number ρ let the
following asymptotic relation holds

f(s) ∼ exp
(
± ρs

n+ 1

)
A

(
s

n+ 1
+ n

)
as s→∞,

where A ∈ Tr(SV ), then

α(t) ∼ e±ρtA(t)(n+ 1)ρ

Γ(ρ+ 1)
as t→ +∞.(38)

Proof. (Application of Theorem 13). If ρ > 0 we choose the function
g(e−t) of Theorem 13 as follows:

g(e−t) =
{
et for 0 ≤ t ≤ 1,
0 for 1 < t <∞,

(39)

then the conclusion of Theorem 13 is preciesely (38) provided t approaches
its limit through the set of points where α(t) is continuous. Obviously this
restriction may be removed since α(t) is monotonic. The proof is complete.

In connection with the preceding facts we can prove the following state-
ment which is an extension of Theorem 13.

Theorem 15. Let t 7→ α(t) be nondecreasing function and such that the
following integral of the form

f(s) =
∫ ∞

0
e−std(α(t))
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converges for s > 0 and for n ∈ N and for some positive numbers ρ and δ
let the following asymptotic relation holds

f(s) ∼ s−δ exp
(
± ρs

n+ 1

)
A

(
s

n+ 1
+ n

)
as s→∞,

where A ∈ Tr(SV ). If x 7→ g(x) is a bounded variation function in (0, 1),
then ∫ ∞

0
e−stg(e−st)d(α(t)) ∼ e±ρsA(s)

sδΓ(δ)

∫ ∞

0
e−tg(e−t)tδ−1dt

as s → ∞, where s varying through the set of points for which the integral
on the left exists.

The proof of this statement is a totally analogous with the preceding
proof of Theorem 13, and thus we omit it.

Similar to the system for Theorem 14, from the preceding result of The-
orem 15, specializing g(x) with (39) we may directly obtain the following
form of Tauberian statement.

Theorem 16. Let t 7→ α(t) be nondecreasing function and such that the
following integral of the form

f(s) =
∫ ∞

0
e−std(α(t))

converges for s > 0 and for n ∈ N and for some positive numbers ρ and δ
let the following asymptotic relation holds

f(s) ∼ s−δ exp
(
± ρs

n+ 1

)
A

(
s

n+ 1
+ n

)
as s→∞,

where A ∈ Tr(SV ), then

α(t) ∼ t−δe±ρtA(t)
Γ(δ + 1)

as t→∞.

6. Monotone Density Statements. In this section we give only a
simplest Tauberian theorem to show the flavour of the arguments. In this
sense, a typical result of the Tauberian nature can be stated as follows.

Theorem 17. Let x 7→ G(x), defined and positive on Ia := [a,∞) for some
a > 0, be given by

G(x) =
∫ x

b
k(t)dt for b ≥ a,

where t 7→ k(t) is ultimately monotone (i.e., monotone for t sufficiently
enough). Then for σ ≥ 0 we have that

G(x) = eσxA(x) implies
k(x)
G(x)

→ σ (as x→∞),

where x 7→ A(x) is an arbitrary translational slowly varying function.



Milan R. Tasković 71

Proof. Suppose first that k(t) is ultimately nondecreasing. Then for
β > α ≥ α0 say,

G(t+ β)−G(t+ α)
G(t)

=
∫ t+β

t+α

k(y)
G(t)

dy,

so that
(β − α)k(t+ α)

G(t)
≤ G(t+ β)−G(t+ α)

G(t)
≤ (β − α)k(t+ β)

G(t)
;(40)

thus, letting t→∞, from the left hand side of

lim sup
t→∞

k(t+ α)
G(t)

≤ eσβ − eσα

β − α
,

and letting β → α, since the left hand side of the present inequality is
independent of β we get

lim sup
t→∞

k(t+ α)
G(t)

≤ σeσα.

On the other hand, similarly, from the right hand side of (40) we obtain
the following inequality

lim inf
t→∞

k(t+ β)
G(t)

≥ σeσβ,

and thus, since α and β are arbitrary, for arbitrary γ ≥ α0, we obtain the
following equality

lim
t→∞

k(t+ γ)
G(t)

= σeσγ ,

and so, putting x = t + γ and using G(t) = eσtA(t) completes the asser-
tion. The second case where k(t) is ultimately nonincreasing may be proved
similarly. The proof is complete.

Annotation. We notice that the statement of Theorem 17 can extend
to the case when

G(x) =
∫ x

b
k(t)d(B(t)) for b ≥ a,

where B(t) = eσtA(t) is monotone nondecreasing and translational regularly
varying with index σ and G(x) = eρxA(x) for ρ ≥ 0 and A ∈ Tr(SV )!

7. Stieltjes transform. We now prove a Tauberian theorem of a very
special nature for Laplace-Stieltjes transform, i.e., for Stieltjes transform.

Theorem 18. If t 7→ U(t) is a nondecreasing function, U(0−) = 0 and
ρ > 0, let Sρ(U ; ·) be the Stieltjes transform of order ρ such that

Sρ(U ;x) :=
∫ ∞

0

d(U(t))
(t+ x)ρ

∼ x−δ exp
(
± σx

n+ 1

)
A

(
x

n+ 1
+ n

)
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as x → ∞ for ρ ≥ σ > 0, n ∈ N, δ > 0, ρ + δ > 1 and A ∈ Tr(SV ), then
for arbitrary γ > 0 as x→∞ the following fact holds

U(x) ∼ eργΓ(ρ+ 1)x1−ρ−δe±σxA(x)
Γ(δ + 1)Γ(ρ+ δ)

.

Proof. (Applications Theorem 16 and the method of Theorem 17). Since
for ρ > 0 we have the following equality of the form

1
(t+ x)ρ

=
1

Γ(ρ)

∫ ∞

0
e−tτe−xττρ−1dτ,

it follows that

Sρ(U ;x) =
∫ ∞

0

d(U(t))
(t+ x)ρ

=
∫ ∞

0
g(τ)e−xτdτ,

where

g(τ) =
τρ−1

Γ(ρ)

∫ ∞

0
e−tτd(U(t));

and thus, from the given, and by use of Theorem 16 it follows that∫ x

0
g(τ)dτ ∼ x−δe±σxA(x)

Γ(δ + 1)

as x → ∞. Writing g(τ) out in full, we obtain the following asymptotic
relation

1
Γ(ρ+ 1)

∫ x

0
f(τ)d(τρ) ∼ x−δe±σxA(x)

Γ(δ + 1)
,

where f(τ) =
∫∞
0 e−tτd(U(t)), so that

α(x) :=
∫ x

0
f(τ)d(τρ) ∼ x−δe±σxA(x)Γ(ρ+ 1)

Γ(δ + 1)
(41)

as x→∞, where f(τ), the Laplace-Stieltjes transform of U(t) is monotone
nonincreasing as τ increases. In further let β > α > 0. Then (similarly to
the proof of Theorem 17) we have

α(x+ β)− α(x+ α)
α(x)

=

∫ x+β
x+α f(τ)d(τρ)

α(x)
≥
f(x+ α)

[
(x+ β)ρ − (x+ α)ρ

]
α(x)

,

hence, using (41) and letting x → ∞ we obtain the following inequality of
the form

lim sup
x→∞

f(x+ α)xρ−1

α(x)
≤ eρα

which holds true for arbitrary α > 0. On the other hand, similarly, we
obtain

lim inf
x→∞

f(x+ β)xρ−1

α(x)
≥ eρβ
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for arbitrary β > 0. Hence, for arbitrary γ > 0 we have the following fact
of the form

lim
x→∞

f(x+ γ)xρ−1

α(x)
≤ eργ ;

thus, putting t = x+ γ, we obtain that

f(t) ∼ eργ(t− γ)1−ρα(t− γ)

as t → ∞, i.e., from the preceding facts we have as t → ∞ the following
asymptotic relation

f(t) ∼ eργ(t− γ)1−ρ−δe±σ(t−γ)A(t− γ)Γ(ρ+ 1)
Γ(δ + 1)

(42)

taking into account (41). Since, in the general case, for n ∈ N and y = t−γ
we have

y1−ρ−δe±σyA(y) ∼ y1−ρ−δ exp
(
±σy
n+ 1

)
A

(
y

n+ 1
+ n

)
as y → ∞, thus applying now Theorem 16, from the preceding facts it
follows that

U(x) ∼ eργΓ(ρ+ 1)
Γ(δ + 1)

x1−ρ−δe±σxA(x)
Γ(ρ+ 1)

as x→∞, which is the required result. The proof is complete.
Annotation. The preceding result of Theorem 18 is connection with the

result of Karamata [18] and the classical statement in 1914 of Hardy and
Littlewood.

8. Tauberian Theorem for Power Series. One may specialise The-
orem 16 to Dirichlet series

∑∞
n=0 an exp(−λns). The case λn = n is partic-

ularly important; writing s in place of e−s one studies the power series

f(s) =
∞∑

n=0

ans
n,(43)

the results above yield as a directly consequence of the preceding Tauberian
nature statements.

Theorem 19. If an ≥ 0 for n ∈ N∪{0} and the power series (43) converges
for s ∈ [0, 1), then the asymptotic relation of the form

f(s) ∼ (1− s)δ exp
(

σ

(1− s)(k + 1)

)
A

(
1

(1− s)(k + 1)
+ k

)
(44)

as s→ 1−, for δ, σ ≥ 0, k ∈ N and A ∈ Tr(SV ), implies
n−1∑
k=0

ak ∼
n−δeσnA(n)

Γ(δ + 1)
as n→∞.
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Proof. Defining

α(x) =
∫ x

0
u(t)dt, for x ≥ 0,

where u(t) = an for n ≤ t < n+ 1 and for n ∈ N ∪ {0}. Then we have that

α(x) =
n−1∑
k=1

ak + an(x− n)

is a continuous function with properties α(0) = 0 and α(n) =
∑n−1

k=0 ak.
Defining, in further, that is

h(s) =
∫ ∞

0
e−std(α(t))

we obtain

h(s) =
∞∑

n=0

∫ n+1

n
e−std(α(t)) =

∞∑
n=0

∫ 1

0
e−s(n+t)d(α(n+ t)) =

=
∞∑

n=0

e−snan

(∫ 1

0
e−stdt

)
=

1− e−s

s

∞∑
n=0

ane
−sn =

1− e−s

s
f(e−s),

hence, by (44), as s→ 0+ we have

h(s) ∼ 1− e−s

s
(1−e−s)δ exp

(
σ

(1− e−s)(k + 1)

)
A

(
1

(1− e−s)(k + 1)
+ k

)
,

i.e.,

h(s) ∼ s−δ exp
(

σs

k + 1

)
A

(
s

k + 1
+ k

)
as s→∞.

Applying Theorem 16, directly, we obtain the following asymptotic rela-
tion in the following form

α(t) ∼ t−δeσtA(t)
Γ(δ + 1)

as t→∞,

i.e., thus

α(n) :=
n−1∑
k=0

ak ∼
n−δeσnA(n)

Γ(δ + 1)
as n→∞.

The proof is complete. (In connection with the preceding statement also
see and a result by Djurčić [26]).
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[33] M. R. Tasković: Survey on translational regularly varying functions, Mathematica
(Cluj), 48 (71) (2006), 207–218.

[34] U. Stadtmüller, and R. Trautner: Tauberian theorems for Laplace transforms, Journal
für die reine und angewandte mathematik, 310 (1979), 283–290.

[35] A. Tauber: Ein Satz aus der Theorie der unendlichen Reihen, Monatshefte für Mat-
hematik und Physik, 8 (1897), 273-277.

Milan R. Tasković
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